Übungsaufgaben Mathematik 2 Analysis für die Übungen am 2. und 3.5.24

25. April 2024

Aufgabe 1

Beweisen Sie den folgenden Satz (aus der Vorlesung): Eine Vektorfolge $(\vec{a}_n)_{n\in\mathbb{N}}$ konvergiert genau dann gegen \vec{a} , wenn alle ihre Koordinatenfolgen gegen entsprechende Koordinaten von \vec{a} konvergieren.

Aufgabe 2

- a) In der industriellen Fertigung werden bei der Qualitätskontrolle Bauteile vermessen und die Werte $x_1, \ldots x_n$ ermittelt. Der Vektor $\vec{d} = \vec{x} \vec{s}$ gibt die Abweichungen der Messungen zu den Sollwerten s_1, \ldots, s_n an. Definieren Sie nun eine Norm auf \mathbb{R}^n derart, daß $||\vec{d}|| < \varepsilon$ gdw. alle Abweichungen vom Sollwert kleiner als eine gegebene Toleranz ε sind.
- b) Beweisen Sie, daß die in a) definierte Norm alle Axiome einer Norm erfüllt.

Aufgabe 3

Berechnen Sie die partiellen Ableitungen $\frac{\partial f}{\partial x_1}$, $\frac{\partial f}{\partial x_2}$, $\frac{\partial f}{\partial x_3}$ folgender Funktionen $f: \mathbb{R}^3 \to \mathbb{R}$

a)
$$f(\vec{x}) = |\vec{x}|$$
 b) $f(\vec{x}) = x_1^{x_2} + x_1^{x_3}$ c) $f(\vec{x}) = x_1^{(x_2 + x_3)}$ d) $f(\vec{x}) = \sin(x_1 + x_2)$ e) $f(\vec{x}) = \sin(x_1 + ax_2)$

Aufgabe 4

Berechnen Sie die Ableitungsmatrix der Funktion $\vec{f}(x_1, x_2, x_3) = \begin{pmatrix} \sqrt{x_1 x_2 x_3} \\ \sin(x_1 x_2 x_3) \end{pmatrix}$.

Aufgabe 5

Geben Sie für
$$\vec{f}(x,y) = \begin{pmatrix} \sqrt{xy} \\ \sin(e^x + e^y) \end{pmatrix}$$
 die Tangentialebene im Punkt $\vec{x_0} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ an.